

Digital Multimeter Series

TY700/TY500/732/731 Series

- **TY7**□□ Series of 4.5-digit Handheld Multimeters
- **TY Series** of 3.5-digit Handheld Multimeters
- **732** Series of 3.5-digit Handheld Multimeters
- **731**□**1** of 3.5-digit Pocket Digital Multimeter

Integral Action Time

Digital multimeters (DMMs) employ an A/D converter with a dual-integration system, which determines the measurement value by converting the input voltage into time using an integration AD converter. The interval to perform an integral action periodically is referred to as the integralaction time.

Measurement Accuracy

With DMMs, the measurement accuracy is generally expressed as: \pm __% of reading + __digits. ("Reading" refers to the reading value, and is abbreviated as "rdg"; "digits" refers to the number displayed in the smallest decimal place, and is abbreviated as "dgt.") This expresses the range of values that a DMM may measure or represent for a given actual value.

Root Mean Square Value

The value most directly related to the energy of a given waveform. Refers to the square root of a value found by averaging the squares of instantaneous values of a waveform over a single cycle. (See Table 1,Figures 1 and 2.)

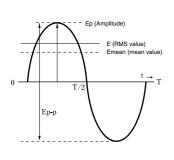
Mean Value

Refers to the average of the sum of instantaneous values, determined for a current half-wave. It is equivalent to calculating the surface area of a waveform.

Form Factor

Ratio of RMS value with respect to average value. Form factor = RMS value/mean value (See Figures 1 and 2.)

Crest Factor


Ratio of maximum value to RMS value.

Crest factor = maximum value/RMS value(See Figures 1 and 2.)

Peak-to-Peak (P-P) value

Refers to the distance between the smallest and largest amplitudes in a waveform (see Figure 1).

Figure 1. RMS and Mean Values of Sine Wave

WS value
$$E = \sqrt{\frac{1}{T} \int_0^T e^2(t) dt} \text{ (energy)}$$

Nean value
$$\operatorname{Emean} = \frac{1}{T} \int_0^T |e(t)| dt$$
 (surface area)

Calibration of RMS value by

rean value rectification
$$E = \frac{1}{\sqrt{2}} \quad Ep = 0.7071 \cdot Ep$$

$$Emean = -\frac{2}{\pi} \cdot Ep = 0.6366 \cdot Ep$$

$$E = \frac{\pi}{2\sqrt{2}} \cdot Emean = 1.11 \cdot Emean$$

P-P value

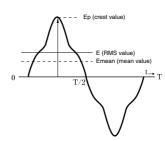
Ep-p= $2\sqrt{2}$ E = $2.828 \cdot E$

Frequency Characteristic

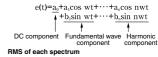
Refers to a characteristic that shows variations in input, measurement, or response with frequency. When measuring alternating current signals, a measured signal does not have a simple frequency, but often includes various frequencies ranging from lower frequencies to higher harmonics. To measure such signals more accurately, it is preferable to use a measurement device that has a broader frequency characteristic range.

Input Impedance

To prevent the measured object from being influenced during voltage measurement, you should use a measurement device with an extremely high input impedance.


Decibel

A unit used for describing the change in electrical signal amplitude or noise level, or transmission systems in wired devices, etc. This parameter is also used to represent the level differences in voltage, current or related values, but is generally restricted to cases characterized by the relationship: $(I_1/I_2)^2 = (V_1/V_2)^2 = P_1/P_2$. In the abbreviation "dB," "d" (deci) denotes 1/10, and "B" (Bell) denotes logarithm.


Table 1. RMS Value, Average Value, Waveform Factor and Crest Factor for a Typical Periodic Waveform

Item	Waveform	RMS	Mean value	Waveform factor	Crest factor
Sine wave	\Diamond	$\frac{1}{\sqrt{2}}$ =0.707	$\frac{2}{\pi} = 0.637$	$\frac{\pi}{2\sqrt{2}} = 1.11$	$\sqrt{2} = 1.414$
Half rectification wave	\triangle	$\frac{1}{2}$ =0.5	$\frac{1}{\pi}$ =0.318	$\frac{\pi}{2}$ =1.571	2
Full rectification wave		$\frac{1}{\sqrt{2}}$ =0.707	$\frac{2}{\pi} = 0.637$	$\frac{\pi}{2\sqrt{2}} = 1.11$	$\sqrt{2} = 1.414$
Triangular wave	→	$\frac{1}{\sqrt{3}}$ =0.577	$\frac{1}{2}$ =0.5	$\frac{2}{\sqrt{3}}$ =1.155	$\sqrt{3} = 1.732$
Square wave		1	1	1	1

Figure 2. RMS of Distorted Waves

Instantaneous value and spectrum

$$|\operatorname{En}| = \frac{\sqrt{a_n^2 + b_n^2}}{\sqrt{2}}$$

RMS value

$$E {=} \sqrt{ \ E_{\scriptscriptstyle 0}{}^{\scriptscriptstyle 2} {+} |\, E_{\scriptscriptstyle 1}|^{\scriptscriptstyle 2} {+} |\, E_{\scriptscriptstyle 2}|^{\scriptscriptstyle 2} {+} \cdots {+} |\, E_{\scriptscriptstyle n}|^{\scriptscriptstyle 2} }$$

Crest factor (CF)

CF = Crest value

RMS value

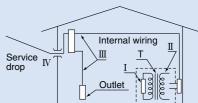
Waveform factor = RMS value

CE Mark

The products of Yokogawa M&C Corporation are subjected to design and evaluation testing to ensure compliance with the safety and EMC standards in accordance with the directives issued by the EC.

Electromagnetic Compatibility (EMC)

The parameters EMI and EMS are referred to as electromagnetic compatibility as they relate to compatibility within an electromagnetic environment.


Safety Standards

These standards lay out safety requirements that are to be met by a product with the objective of the preservation of human life and property. The applicable international standard is IEC 61010, and while a product must conform to this standard, there are also domestic standards laid out by individual countries. With these safety regulations, the range of use of a measurement device is specified by categorization in measurement categories I through IV to ensure the safety of the user. The designations "CAT II, 1000 V" or "CAT III, 600 V" at the input terminals of a measurement device, for example, indicates the applicable category and the maximum voltage for the device in terms of safety.

Measurement categories (CAT)

In order to ensure the safety of the user, IEC 60664 defines the ranges of use of measuring instruments by classifying power levels into measurement categories I through IV. This is because the excessive impulse or surge levels induced in a power line vary depending on the location of measurement (category). Categories with higher numerals

designate locations that include larger surge voltages. Instruments that are designed for category III can thus withstand higher surge voltages than instruments designed for category II.

Measuren	ment category	Description	Remarks		
ı	CAT.I	For measurement performed on circuits not directly connected to MAINS.			
П	CAT.II	For measurement performed on circuits directly connected to the low-voltage installation.	Appliances, portable equipments, etc.		
Ш	CAT.III	For measurement performed in the building installation.	Switchboard, circuit breaker, etc.		
IV CAT.IV		For measurement performed at the source of the low-voltage installation.	Overhead wire, cable systems, etc.		

Digital Multimeter Selection Guide

Mook/	J'n _o	May 1	Onle Mallo	(B) (B)	By Graph	/,	isplay	//	0/	A Contraction of the contraction	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		//	asure 30,500 45,	//	/	//	Ost Minico	Ma Mondion	Ac. Min Con	Louis Value M	Daring Congo	A HOW COMPUTATION	Ad Hollow DOD ON	dition	al Fu	nction	External View
TY710		50000	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	50000
TY720		30000	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
TY520		6000		•	•	•	•		•		•	•	•	•	•					•		•	•		•		•	
TY530	- Handheld	0000		•	•	•	•		•		•	•	•	•	•	•	•	•		•		•	•		•	•	•	
73201	riaidioid						•		•		•	•	•										•		0		•	
73202		4300					•		•		•	•	•			•							•		0		•	
73203		4300					•		•		•	•	•			•							•		0		•	
73204							•				•	•	•										•		0		•	
73101	Pocket-sized	4300					•				•	•	•										•				•	A SECONDARIA

^{○ :} Also functions as excessive current input warning.

Maximum Measurement Accuracy

0.020% rdg + 2 dgt (DC voltage) True RMS measurement

Safe Design

Conforms to EN61010-1 safety standard

Conforms to measurement category 1000 V AC/DC, CAT Ⅲ and 600 V AC/DC, CAT IV

Shutters prevent erroneous insertion of test leads into current measurementterminals (terminal shutters)

The current terminals have terminal shutters that prevent erroneous setting of the measurement function and leadwire connections resulting from operational errors. The terminal shutters open and close according to the function switch position.

Closed Case Calibration

User calibration function

The TY series, simply performing special operations via front panel allows for quick and reliable adjustment. In addition, the series allows for onetouch adjustment of AC voltage- and AC current-to-frequency characteristics. The user calibration function leads to improved operation efficiency and cost reduction.

• External standard instrument required for calibration.

Full Support for Data Management

Two memory modes

- SAVE-mode memory
- A mode for manually saving any data
- Logging-mode memory
- A mode for automatically saving data at a specified interval Logging interval: 1 second to 30 minutes

	Memory capacity							
Model	SAVE-mode memory*	Logging-mode memory*						
TY710	100	1000						
TY720	100	10000						

^{*} Saved data can be checked on the display

Real-time measurement

The optional communication package*1 sold separately (Model 92015) allows you to connect to a PC for transmitting large amounts of data that cannot be saved in the DMM internal memory.

You can transmit the saved data from the internal memory to a PC and process it using application software or spreadsheet software (Excel*2) for data management.

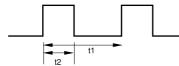
- *1 Communication cable and application software are included.
 *2 Excel is a registered trademark of Microsoft Corporation in the United States.
 *3 The communication cable employs an infrared system, so the device is electrically insolated.

For details of the application software, refer to page 7.

Loaded with Measurement Functions

Peak hold function (TY720, for DC V/A measurement)

Supports waveforms of 1 ms or greater. You can capture instantaneous crest values not possible with ordinary maximum measurement functions.


Relative and percentage value computation

Can display the measured values as the values relative to a reference value (defined by the REL key; even after data hold) or as the percentages of the reference value

Percentage calculation: (Measured value - reference value) / (reference value), expressed as percentage.

Duty ratio (%) measurement

Displays the duty ratio of a pulse waveform: (High level period/1 cycle of waveform) x $100 = (t2/t1) \times 100 [\%]$

AC+DC measurement

Measures RMS of a waveform in which ripple waveforms are superimposed on a direct current

Auto hold

Automatically hold the data measured when the test leads are disconnected from the measured object, thus freeing both hands for performing reliable measurement.

Minimum/maximum/average display

Allows recording of minimum, maximum and average values along with their respective times (time passed since the start of measurement)

Decibel calculation

Computes the logarithm of an alternating current, and uses it together with the relative value computation to display the relative value. You can select the standard resistance according to the application, such as audio or communication circuit signal measurement.

* Selectable standard resistance values: 4/8/16/32/50/75/93/110/125/135/150/200/250/300/500/600/800/900/1000/1200 Ω

Full Display Functions

50,000-count, 51-segment bar graph display

Backlight provided as standard for when working in dark places. Simultaneous display of frequency and voltage, frequency and duty ratio or decibels and voltage on the dual display.

Display: V AC and V DC measurements

In addition to the above, the sub-display can display the reference value for differential calculation, memory storage numbers for measured data, minimum/maximum/average value recording times, and standard resistance during decibel calculation.

TY700 General Specifications

Measurement Functions : DC voltage, AC voltage, DCV+ACV, DC current, AC current, DCA+ACA, resistance, frequency, temperature, capacitance duty cycle, decibel calculation, continuity check, diode test, low-power resistance (TY720 only)

For AC voltage/current, RMS/MEAN detection can be switched (TY720 only). For AC voltage/current, the low-pass filter can be turned on/off (TY720 only).

: Data hold/auto hold/peak hold (TY720 only), range hold, maximum/minimum/average values resistance, capacitance zero, relative and percentage value calculation, manual-mode memory, logging-mode memory, auto power off, backlight (white LED)

Display

auto power on, deskugirt (willed Eth)

5-digit LO: — 7-segment

Digital display: — Main display; [50,000] counts

Sub-display; [50,000] counts

Bar graph display: — 51-segment

Polarity indicator: — "-" appears automatically when the polarity is negative

Bar graph display: 15 times/sec

Operating Temp, and Humidity: -20 to 55°C; 80% RH or less (no condensation) 40 to 55°C: 70% RH or less

Storage Temp, and Humidity: -40 to 70°C; 70% RH or less (no condensation)

Temperature Coefficient: -4dd the accuracy 0.05/°C to the basic accuracy at a temperature within -20 to 18°C and 28 to 55°C. For contin measurements, add 1 digit/°C for DC voltage (DCV) and DC current (DCA). (Add 3 digits/°C for 50mV, 5A, and 10A ranges)

Theorard A(R6) dry cells

Flour AA (R6) dry cells

Approx. 120 hours (for continuous DC voltage measurement with alkaline cells)

-Approx. 90(W) x 192(W) x 49(D) mm

Dimensions

Weight :Approx. 560g (including batteries)

Compliance with Standards : Safety EN61010-1, EN61010-031, 1000V CAT III, 600V CAT IV, pollution level 2, indoor, 2000m max. above sea level

UL 61010-1, EN61016-031, 1000V CAT III, 0000V UL 61010-031, CAN/CSA-C22.2 No. 61010-1, UL 61010-031, CAN/CSA-C22.2 No. 61010-031 EMC: EN61326-1 Class B, EN55011 Class B Group 1

Standard Accessories :AA (R6) dry cells: 4, Test lead set (98015): 1, Fuse (installed) 440mA/1000V and 10A/1000V, Instruction manual: 1

Model and Specification Code

Name	Model
District Market	TY710
Digital Multimeter	TY720

Optional Accessories

Name	Model	Specification
DMM communication package	92015	USB communication adapter + USB
		communication cable + Application software
Communication package for printer	97016	Printer adapter + Printer cable
Printer	97010	Thermal printer Paper width 112mm
AC adapter for printer	94005	AC 100V ± 10%
	94006	For Printer, Europe
	94007	For Printer, USA
Thermal printing paper	97080	10 rolls (1 set)
Test leads	98015	1000V CAT III, 600V CAT IV Red/black (1 set)
Test leads with Alligator Clip	99014	1000V CAT III, 600V CAT IV Red/black (1 set)
Fuse	99015	440 mA/1000V (1 piece/1 unit)
	99016	10 A/1000 V (1 piece/1 unit)
TC-K temperature probe	90050	-50 to 600°C (For liquids)
	90051	-50 to 600°C (For liquids)
	90055	-20 to 250°C (For surfaces)
	90056	-20 to 500°C (For surfaces)
Current clamp probe	96001	For 400A, AC Output: 10mV/A, AC
Carrying case	93029	Hard type (Houses the DMM, the test leads and communication cable

Performance

Measuring Rate

Test conditions: Temperature and humidity = $23 \pm 5^{\circ}$ C, 80% RH or less; Accuracy = \pm (% rdg + dgt). Note: A response time is the time required for achieving the accuracy specified for the corresponding range.

DC Voltage Measurement(...V)

Range	Resolution	Accuracy TY710,TY720	Input Resistance	Maximum Input Voltage	
50mV	0.001mV	0.05+10			
500mV	0.01mV	0.02+2	Approx. 100MΩ	1000V DC	
2400mV	0.1mV	0.02+2			
5V	0.0001V	0.025+5			
50V	0.001V		40140	1000V rms AC	
500V	0.01V	0.03+2	10ΜΩ		
1000V	0.1V				

NMRR: 80dB or greater for 50/60Hz \pm 0.1%At 50mV of range, 70dB or greater for 50/60Hz \pm 0.1% CMRR: 100dB or greater for 50/60Hz/Rs=1k Ω) Response time: 0.3 seconds or less

AC Voltage Measurement (RMS) (~V) AC coupling, RMS detection, crest factor for 1000V of range: 1.5; crest factor for ranges other than 1000V; 3

		Accuracy (L	Jpper: TY710;	Lower: TY72	Input	Maximum			
Range	Resolution	10 -	20Hz -	1k -	10k -	20k -	50k -	Impedance	Input Voltage
		20Hz	1kHz	10kHz	20kHz	50kHz	100kHz	impedance	iliput voltage
50mV	0.0011/	_	_	_	_	_	-		
DUIIIV	0.001mV	2+80*2	0.4+40*2	5+40*2	5.5+40*2	15+	40* ²	11MΩ<50pF	
500mV	0.01mV							11M75<20ht	
5V	0.0001V	1.5+30*1	0.7-	+30*1	2+50*2	_	_		1000V rms AC
50V	0.001V	1+30*1	0.4	+30*1	1+40*1	2+70*2	5+200*2		1000V DC
500V	0.01V	1						10140 -50-5	
		*2	*2	3+30*2				10MΩ<50pF	
1000V	0.1V	*2	*2	3+30*2		_			

^{*1:} At 5 to 100% of range *2: At 10 to100% of range CMRR: 80dB or greater for DC to 60Hz(Rs= 1k\Omega) Response time: 1 second or less

AC Voltage Measurement [MEAN] (~V)

AC coupling, Mean-value detection and RMS-value calibration (sinusoidal wave)

Range	Resolution		Accuracy TY720		Input Impedance	Maximum Input Voltage
		10 - 20Hz	20 - 500Hz	500 - 1kHz	impedance	iliput voltage
50mV	0.001mV	4+80*2	1.5+30*2	5+30*2		
500mV	0.01mV				11MΩ<50pF	1000V rms AC 1000V DC
5V	0.0001V	2+30*1	1+30*1	3+30*1		
50V	0.001V	2+30	1+30	3+30		10000 00
500V	0.01V			l	10MΩ<50pF	
1000V	0.1V	*2	*2	*2		

^{*1:} At 5 to 100% of range *2: At 10 to 100% of range CMRR: 80dB or greater for DC to 60Hz (Rs= 1kΩ) Response time: 1 second or less

DCV + ACV	(+~)		AC coupli	ing, RMS detec	ction crest fa	ctor for 1000\	l of range: 1.5	; crest factor for ranges	other than 1000 V: 3
Range	Resolution	Accuracy (U	Accuracy (Upper: TY710; Lower: TY720; the display of "—" is not specified) DC.10 - DC.20Hz DC.1k - DC.10k - DC.20k - DC.50k -						Maximum
Hange	Resolution	20Hz	- 1kHz	10kHz	20kHz	50kHz	100kHz	Impedance	Input Voltage
5V	0.0001V	4.5.4041	1+1					11MΩ<50pF	
50V	0.001V				2+10*2	- 4042			
500V	0.01V	1.5+10*1	0.5+	-10^-	1+10*1	2+10*2	5+20*2	10140 -50-5	1000V rms AC
1000V	0.1V	*2	*2		_			10MΩ<50pF	1000V DC
	0.11	*2	*2		-	_			

^{*1:} At 5 to 100% of range *2: At 10 to 100% of range CMRR: 80dB or greater for DC to 60Hz (Rs = 1kΩ) Response time: Approx. 2 seconds

Resistance Measurement (Q)

		mododiomont (2	-,					
Dongo	Range	Resolution	Accu	racy	Maximum Testing	Open-circuit	Input Protection	
	naliye		TY710	TY720	Current	Voltage	Voltage	
	500Ω	0.01Ω			<1mA			
	5kΩ	0.0001kΩ	0.1+2*1	0.05+2*1	<0.25mA		1000V rms	
	50kΩ	0.001kΩ	0.1+2		<25μA	<2.5V		
	500kΩ	0.01kΩ			<2.5μA	\L.U.		
	5MΩ	0.0001MΩ	0.5	i+2	<1.5µA			
	50MΩ	0.001MΩ	1-	+2	<0.13μΑ			

^{*1:} Accuracy after zero calibration Response time: 1 second or less for 500Ω to $500k\Omega$, 5 seconds or less for $5M\Omega$ to $50M\Omega$

Loss possos	modiotamoo mod	ouromont (Er 22)		maxim	ani onocaro alopiaj. oco	
Range	Resolution	Accuracy	Maximum Testing	Open-circuit	Input Protection Voltage	
riango	Hesolution	TY720	Current	Voltage		
5kΩ	0.001kΩ		<10μΑ			
50kΩ	0.01kΩ	0.2+3	<1.0µA	<0.7V	1000V rms	
500kΩ	0.1kΩ		<0.6μΑ			
5ΜΩ	0.001MΩ	1+3	<0.05μΑ			

Continuity C	Check (®)			Maximi	um effective display: 5000	
Range	Resolution	Continuity Beeper TY710, TY720	Testing Current	Open-circuit Voltage	Input Protection Voltage	ı
500Ω	0.1Ω	Buzzer sounds at $100 \pm 50\Omega$ or less.	Approx. 0.5mA	<5V	1000V rms	ı

		()		
Range	Resolution	Accuracy TY710,TY720	Voltage Drop	Maximum Input Current
500μΑ	0.01μΑ		<0.11mV/uA	
5000μΑ	0.1μΑ	0.2+5	CO.TIIIV/μΑ	440mA
50mA	0.001mA		<4mV/mA	fuse-protected
500mA*3	0.01mA		<4IIIV/IIIA	
5A	0.0001A	0.6+10	<0.1V/A	10A
10A	0.001A	0.6+5	<0.1V/A	fuse-protected

Response time: 0.3 seconds or less *3: Maximum testing current at 500mA of range is 440mA

AC CUITEIR Measurement [nims] (~A)			nivia uetet	dion crest factor. 3		
Range	Resolution Accuracy (Upper: TY710;	Accuracy (Upper: TY710; Lower: TY720; the display of "" is not specified)			Voltage Drop	Maximum Input
naliye	nesolution	10 - 20Hz	20Hz - 1kHz	1k - 5kHz	voltage brop	Current
500μΑ	0.01μΑ				<0.11mV/uA	
5000μΑ	0.1μΑ	1.5+20	1+20	_	<υ.11111/μΑ	440mA
50mA	0.001mA	1+20	0.75+20	1+30	<4mV/mA	fuse-protected
500mA*8	0.01mA				<4IIIV/IIIA	
5A	0.0001A	1.5+20	1+20	_		10A
10A	0.001A	1.5+20	1+20	2+30	<0.1V/A	fuse-protected

Shown above is the accuracy at 5 to 100% of range (10 to 100% for 10A range). Response time: 1 second or less

AC Voltage Measurement [MEAN] (~A)

Mean-value detection and RMS-value calibration (sinusoidal wave

Range	Resolution		Accuracy TY720		Accuracy TY720		Voltage Drop	Maximum Input
naliye	nesolution	10 - 20Hz	20 - 500Hz	500Hz - 1kHz	Current			
500μΑ	0.01μΑ				<0.11mV/uA			
5000μΑ	0.1μΑ	2+20	1.5+20	2+30	<υ.11111ν/μΑ	440mA		
50mA	0.001mA	2120	1.0120	2100	<4mV/mA	fuse-protected		
500mA*3	0.01mA				<4111V/111A			
5A	0.0001A	3+20	2+20	4+30	<0.1V/A	10A		
10A	0.001A	3+20	2+20	4+30	<0.1V/A	fuse-protected		

Shown above is the accuracy at 5 to 100% of range (10 to 100% for 10A range). Response time: Approx. second or less *3: Maximum testing current at 500mA of range is 440mA

DCA + ACA (...+~)

Maximum effective display: 50,000, crest factor: 3

Ranne	Range Resolution Accuracy (Upper: TY710; Lower: TY720; the display of "—" is not specified)			Voltage Drop	Maximum Input	
riango	11000101011	DC,10 - 20Hz	DC,20Hz - 1kHz	DC,1k - 5kHz	Tottago Drop	Current
500μΑ	0.01μΑ				<0.11mV/uA	
5000μΑ	0.1μΑ	2+10	1.5+10	_	CO.TTIIIV/μΑ	440mA
50mA	0.001mA	1.5+10	1+10	1.5+10	<4mV/mA	fuse-protected
500mA*3	0.01mA				<4IIIV/IIIA	
5A 0.0001A 2+10 1.5+10 —					10A	
10A	0.001A	2+10	1.5+10	3+10	<0.1V/A	fuse-protected
Shown above is	Shown above is the accuracy at 5 to 100% of range (10 to 100% for 10A range). Response time: Approx. 2 seconds *3: Maximum testing current for 500mA of range is 440mA.					

Diode Test (-K)-)

2.4V 0.0001V 1 + 2 Approx. 0.5mA <5V 1000V ms	Range	Resolution	Accuracy TY710,TY720	Testing Current (Vf = 0.6 V)	Open-circuit Voltage	Input Protection Voltage
	2.4V	0.0001V	1 + 2	Approx. 0.5mA	<5V	1000V rms

Temperature Measurement (TEMP)

Resolution AccuracyTY710,TY720 Input Pri
 Hange
 Resolution
 Reduce of the control of the control

Capacitance (4	F)	Maximum effective display:5000		
Range	Resolution	AccuracyTY710,TY720	Input Protection Voltage	
5nF	0.001nF			
50nF	0.01nF			
500nF	0.1nF	1+5*1		
5μF	0.001µF		1000V rms	
50μF	0.01μF			
500μF	0.1μF	2+5		
5mF	0.001mF	3+5		
50mF	0.01mF] 3+3		

^{*1:} Accuracy after zero calibration

Frequency Measureme	mum effective display: 9999	
Range (auto-ranging)	Resolution	Accuracy TY710,TY720
2.000 - 9.999Hz	0.001Hz	
9.00 - 99.99Hz	0.01Hz	0.02+1*1
90.0 - 999.9Hz	0.1Hz	0.02+1
0.900 - 9.999kHz	0.001kHz	
9.00 - 99.99kHz	0.01kHz	+2

^{*1:} At 10 to 100% of input voltage or current range *2: At 40 to 100% of input voltage or current range

Duty Cycle (%)

Range	Resolution	on Accuracy TY710,TY720			
10 - 90% 1% ± 1%*1					
1. For input of a equare wave with a frequency within 10 00 to					

500.0Hz At 40 to 100% of input voltage or current range

Peak Hold Function (PH	l) TY720 only Maxi	mum effective display: 5000
Range	Accuracy TY720	Response Time
DCV. DCA	± 100 digit	>250us

^{*3:} Maximum testing current at 500mA of range is 440mA

Safe design and supports various maintenance applications.

Maximum Reliability and Safety

Reliability

High accuracy and safety

Accuracy: 0.09% rdg + 2 dgt (DC voltage)

True RMS measurement

Only TY530 can switch RMS and mean detection.

Safe Design

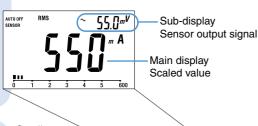
Conforms to EN61010-1 safety standard.

Conforms to overvoltage category 1000 V AC/DC, CAT Ⅲ and 600 V AC/DC, CAT IV.

Shutters prevent erroneous insertion of test leads into current measurement terminals (terminal shutters).

If the function is switched to other than current measurement while a test lead remains inserted in a current measurement terminal, the fuse built into the DMM can not protect the circuits. The terminal shutters prevent such accidental errors.

Closed Case Calibration


User calibration function

The TY series, simply performing special operations via front panel allows for quick and reliable adjustment. In addition, the series allows for onetouch adjustment of AC voltage- and AC current-to-frequency characteristics. The user calibration function leads to improved operation efficiency and cost reduction.

· External standard instrument required for calibration.

Direct reading of various sensor output signals

The DMM can directly read the various sensor output signals (mV DC/AC) at any scaling. The units can be changed (16 units are available). Output signal and scaled value are simultaneously displayed.

AC/DC clamp-on probe (Model 96095) Reads maximum 60 A when used with the TY500 series.

Data Storage Method

Two memory modes (TY530 only) Selectable from 2 types of memory mode to suit field needs.

SAVE-mode memory

A mode for manually saving any data

Logging-mode memory

A mode for automatically saving data at a specified interval

Memory capac			capacity
	Model	SAVE-mode memory	Logging-mode memory
	TY530	100	1600

Real-time measurement

The optional communication package*1 sold separately (Model 92015) allows you to connect to a PC for transmitting large amounts of data that cannot be saved in the DMM internal memory.

You can transmit the saved data from the internal memory to a PC and process it using application software or spreadsheet software (Excel*2) for data management.

- *1 Communication cable and application software are included.
- 2 Excel is a registered trademark of Microsoft Corporation in the United States.
 3 The communication cable employs an infrared system, so the device is electrically insolated.

For details of the application software, refer to page 7.

TY500 General Specifications

Measurement Functions: DC Voltage, AC voltage, DC current, AC current, resistance, frequency, temperature, capacitance, continuity check, diode test For AC voltage/current, RMS/MEAN detection can be switched (TY530 only).

Low-pass filter can be switched on/off

Additional Functions

: Data hold/auto hold/range hold, maximum/minimum/average values (TY530 only), resistance, relative and percentage value calculation, memory function (TY530 only), communication function (TY530 only), logging-mode memory (TY530 only), logging-m

only), auto power off, backlight

.... 7-seament Display :3.5-digit LCD: Digital display: ---Bar graph display:
Polarity indicator: · [6000] counts · 31-segment

Couchattery indicator: "##=" appears at or below the minimum operating voltage.

'5 times/sec (Frequency: 1 time/sec, Capacitance: max. 0.14 times/sec (1000µF), Resistance: 2.5 times/sec, Temperature: 0.7 times/sec), Bar graph display: 25 times/sec (DC voltage, diode test: 5 times/sec)

Operating Temp, and Humidity :-10 to 55°C: 80% RH or less (no condensation) 40 to 55°C: 70% RH or less

straight entry and thumidity: -30 to 70°C; 70% RH or less (no condensation)

Temperature Coefficient: Add the accuracy 0.1/°C to the basic accuracy at a temperature within -10 to 18°C and 28 to 55°C.

Power Supply: Four AA (R6) dry cells

Battery Life

Measuring Rate

:Approx. 300 hours (for continuous DC voltage measurement with alkaline cells) Withstanding Voltage :6.88kV for 5 seconds (between input terminals and casing)

Withstanding Voltage - Soorv for Sections (between injust terminals and casing)

Dimensions :Approx. 90(W) x 192(H) x 49(D) mm

Weight :Approx. 570g (including batteries)

Compliance with Standards :Safety EN61010-1, EN61010-031, 1000V CAT III, 600V CAT IV, pollution level 2, 2000m max. above sea level

UL 61010-1, CAN/CSA-C22.2 No. 61010-1.

LG 61010-031, CANVCSA-C22 2 No. 61010-031

EMC: EN61326-1 Class B, EN55011 Class B Group 1

ories :AA (R6) dry cells: 4, Test lead set (98015): 1, Fuse (installed) 440mA/1000V and 10A/1000V, Instruction manual: 1

Model and Specification Code

Name	Model	
Br. W. I. M. Br	TY520	
Digital Multimeter	TY530	

Optional Accessories

Name	Model	Specification
DMM communication package	92015	USB communication adapter + USB
		communication cable + Application software
Communication package for printer	97016	Printer adapter + Printer cable
Printer	97010	Thermal printer Paper width 112mm
AC adapter for printer	94005	AC 100V ± 10%
	94006	For Printer, Europe
	94007	For Printer, USA
Thermal printing paper	97080	10 rolls (1 set)
Test leads	98015	1000V CAT III, 600V CAT IV Red/black (1 set)
Test leads with Alligator Clip 99014 1000V CAT III, 6		1000V CAT III, 600V CAT IV Red/black (1 set)
Fuse	99015	440mA/1000V (1 piece/1 unit)
	99016	10A/1000V (1 piece/1 unit)
TC-K temperature probe	90050	-50 to 600°C (For liquids)
TC-K temperature probe	90051	-50 to 600°C (For liquids)
	90055	-20 to 250°C (For surfaces)
	90056	-20 to 500°C (For surfaces)
Current clamp probe	96001	For 400A,AC Output: 10mV/A, AC
	96030	200A,AC
	96031	500A,AC
	96032	700A,AC
	96033	50A,AC
	96034	3000A,AC
	96035	3000A,AC
Carrying case	93029	Hard type (Houses the DMM, the test leads and communication cable

Performance

Test conditions: Temperature and humidity = 23 \pm 5°C, 80% RH or less; Accuracy = \pm (% rdg + dgt). Note: A response time is the time required for achieving the accuracy specified for the corresponding range

DC Voltage Measurement(...V)

Range	Resolution	Accuracy TY520, TY530	Input Resistance	Maximum Input Voltage
600mV	0.1mV		10ΜΩ	
6V	0.001V	0.09+2	11ΜΩ	1000V DC
60V	0.01V	0.0372		1000V DC
600V	0.1V		10MΩ	1000V IIIIS AG
1000V	1V	0.15+2		

NMRR: 60dB or greater for 50/60Hz ± 0.1%

CMRR: 120dB or greater for 50/60Hz (Rs = $1k\Omega$) Response time: 1 second or less

bo our one measurement (
Resolution	Accuracy	Voltage Drop	Maximum Input Current	
0.1μΑ		<0.12mV/uA		
1μA	0.2+2	<0.12πν/μΑ	440mA	
0.01mA		-2 2m\//mA	fuse-protected	
0.1mA		<3.3IIIV/IIIA		
0.001A	0.5+5	-0.1V/A	10A	
0.01A		<u.1v a<="" td=""><td>fuse-protected</td></u.1v>	fuse-protected	
	Resolution 0.1μΑ 1μΑ 0.01mA 0.1mA 0.001A	Resolution	Resolution Accuracy Voltage Drop	

Maximum testing current at 600mA of range is 440mA. Response time: 1 second or less

AC Voltage Measurement (~V) AC coupling, RMS detection (TY530, TY520) crest factor: 3/mean-value detection (TY530 only) sinusoidal wave

Dongo	Donolution		Accuracy			Maximum Input
Range Resolution -		50/60Hz	40-500Hz	500Hz - 1kHz	Input Impedance	Voltage
600mV	0.1mV		1+5	1.5+5	10MΩ, <200pF	1000V rms AC
6V	0.001V				11MΩ, <50pF	
60V	0.01V	0.5+5		1.5+5		1000V TITIS AC
600V	0.1V				10MΩ, <50pF	10000 DC
1000V	1V			-		

Shown above is the accuracy at 5 to 100% of range (200 to 1000V for 1000V range, peak 1500V or less). Response time: 2 seconds or less Add accuracy $=\pm(2\%)$ of reading +2% of F.S.), except for sinusoidal wave. CMRR: 60dB or greater for DC to 60Hz (Rs =1k Ω). 4 counts or less is corrected to 0.

Resistance Measurement (Ω)

Range	Resolution	Accuracy	Maximum Testing Current	Open-circuit Voltage	Input Protection Voltage
600Ω	0.1Ω		<1.2mA	<3.5V	
6kΩ	0.001kΩ	0.4+1*1	<110μΑ		
60kΩ	0.01kΩ	0.4+1**	<13µA		
600kΩ	0.1kΩ		<1.3μΑ	< 1.3V	1000V rms
6ΜΩ	0.001MΩ	0.5+1		\ 1.5V	
60MQ	0.01MQ	1+2(0-40MΩ)	<130nA		
UUIVISZ	0.011WIS2	2+2(40-60MΩ)			

*1: Accuracy after zero calibration for 600Ω to $6k\Omega$ range. Response time: 2 seconds or less for 600Ω to $600k\Omega$, 10 seconds or less for $6M\Omega$ to $60M\Omega$.

Frequency Measurement (Hz)

AC coupling, Maximum effective display: 9999

Range (auto-ranging)	Resolution	Accuracy	Input Voltage Range
10.00 - 99.99Hz	0.01Hz		0.2 - 600V rms
90.0 - 999.9Hz	0.1Hz	0.02+1	0.2 - 600V IIIIS
0.900 - 9.999Hz	0.001kHz	0.02+1	0.4 - 600V rms
9.00 - 99.99kHz	0.01Hz		0.8 - 100V rms

AC Current Measurement (~A) BMS detection crest factor: 3 Accuracy Resolution Range 600μA 0.1μA 6000μA 1μA 60mA 0.01mA 600mA 0.1mA <0.12mV/uA 440mA fuse-protected 10A fuse-protected <0.1V/A

Shown above is the accuracy at 5 to 100% of range (2 to 10A for 10A range). Response time: 3 seconds or Add accuracy = \pm (2% of reading + 2% of F.S.), except for sinusoidal wave. 4 counts or less is corrected to 0.

10A

Diode Test(-K-)						
	Range	Resolution	Accuracy	Testing Current (Vf=0.6V)	Open-circuit Voltage	Input Protection Voltage
	2V	0.001V	1+2	Approx. 0.5mA	<3.5V	1000V rms

Continuity Check(3))

Range	Resolution	Accuracy	Testing Current (Vf=0.6V)	Open-circuit Voltage	Input Protection Voltage
600Ω	0.1Ω	Buzzer sounds at 50+30Ω or less Approx. 1.2mA <		<3.5V	1000V rms
			•		

Capacitance(-IF)

	Range	Resolution	Accuracy	Input Protection Voltage	
	10nF	0.01nF	2+10*1		
	100nF	0.1nF			
	1μF	0.001µF	2+5	1000V rms	
	10μF	0.01μF		10004 11115	
100μF 0.1μF 3+5					
	1000μF	1μF	3+0		
	*1: Accuracy after zero calibration for 10nF to 1uF range.				

Temperature Measurement (TEMP)

			,	
	Range	Resolution	Accuracy	Input Protection Voltage
ſ	-50 - 600°C	0.1°C	2+2°C	1000V rms

Temperature probe: Type K thermocouple sensor (optional)

Accessory AC/DC clamp-on probe (Model 96095)

A compact, light, and portable device with 12-mm caliber useful for tangled wiring.

When used with this probe*1, the DMM can measure and display current (which it otherwise cannot do by itself). The TY500 series can directly read up to 60 A when used with the probe (in sensor mode).

Specifications

	Model		96095			
	Diameter of measurable conductor		12 mm max.			
	Current to measure	Output voltage	Accuracy (at 2	23°C ± 5°C)		
Basic	AO 0 4 to 400 A	Output: 10 mV/A AC (AC 1 to 1300 mVrms)	50/60 Hz	40 Hz to 1 kHz		
performance	AC 0.1 to 130 A	Output: 10 IIIV/A AC (AC 1 to 1300 IIIVIIIIS)	1.2%+0.4 mV	2.5%+0.4 mV		
	DC 0 to ± 180 A	Output: DC10 mV/A (DC 0 to ± 1800 mV)	1.2% + 0).4 mV		
		General specifications				
Operating ten	nperature and humidity	-10 to 55°C, 80%RH or less (no condensation)	-10 to 55°C, 80%RH or less (no condensation)			
Storage temperature and humidity		-30 to 70°C, 85%RH or less (no condensation)	-30 to 70°C, 85%RH or less (no condensation)			
		AAA alkaline cell × 2	AAA alkaline cell × 2			
Power supply	/	Power alert: LED light on at 2.2 V ± 0.2 V	Power alert: LED light on at 2.2 V ± 0.2 V			
		Auto power off at 1.9 V ± 0.2 V	Auto power off at 1.9 V ± 0.2 V			
Battery life		Approx. 35 hours (continuous) (until LED light of	Approx. 35 hours (continuous) (until LED light on)*2			
		127(L) × 42(W) × 22(D) mm				
Dimensions a	and weight	Cable length: 1200 mm	Cable length: 1200 mm			
		Weight: Approx. 140 g (including cells)	Weight: Approx. 140 g (including cells)			
Cofety standard		EN61010-1: CAT III 300V, pollution degree 2, op	EN61010-1: CAT III 300V, pollution degree 2, operation at maximum altitude of 2,000 m			
Safety standard		EN61326-1: Class B, EN61326-2-032	EN61326-1: Class B, EN61326-2-032			
Accessories		Soft carrying case (93040), Battery, User's manual				

^{*1} Readings must be converted when used with the DMM.
*2 After the battery alert, approx. 5 hours remain to automatic power-off.

Communication Functions and Application Software Allow Analyses and Management of Measurement Data

USB communication

Data management by dedicated application software

Data saved in the DMM can be managed by the dedicated application software (Model 92015).

- Saved data can be transmitted from the internal memory to a PC. Data collected in SAVE-memory mode or logging-memory mode
- Measurements by the DMM can be monitored on a PC in real
- Large amounts of data that cannot be saved in the DMM internal memory can be transmitted to a PC in real time. Data can be written to an Excel* spreadsheet. Maximum number of real-time data transmission: 32767
- Measurement data can be laid out in an Excel spreadsheet. Graphs can be automatically created on a spreadsheet.
 - * Excel is a registered trademark of Microsoft Corporation in the United States.

92015 Communications Package Specifications

Specifications

Communication cable

Communication cable: IR communication adapter, USB

communication cable: 1

Cable length: Interface: **USB 1.1**

Supported models: TY710, TY720, TY530

Application software

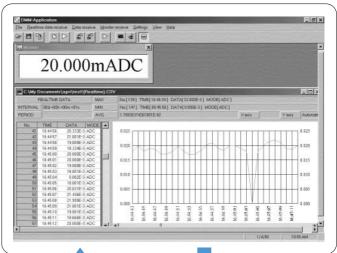
System requirements of PC

Windows2000/XP/Vista(*) Operating system: CPU: Pentium 133 MHz or higher

64 MB or larger Memory:

Storage device: Hard disk with 10 MB or more free space

CD-ROM drive: 1


Excel2000 or later(*) Excel: Contents: CD-ROM software: 1 Communication cable

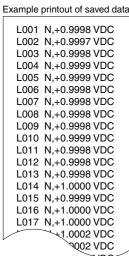
(communication adapter included): 1

User's manual

* Windows and Excel is a registered trademark of Microsoft Corporation in the United States.

Example of document windows in DMM application software

Data layout on **Enlarged view Excel spreadsheet**



Data layout example on Excel spreadsheet

Data management by dedicated printer

Data saved in the DMM can be printed out by the dedicated printer (Model 97010).

The printer communication set ((Model 97016) is needed to connect the printer (Model 97010)).

Dimensions: 160 × 170 × 66.5 mm (Model 97010)

Characters represent the following

information, starting from the left.

- · L: Logging-mode memory
- 3-digit numeral: Data number
- N: Normal measured value (O: "OL" indication on the DMM display)
- 5-digit numeral: Measured value
- VDC: Unit (example shows DC voltage)

Optional Accessories*

PC

* For TY710, TY720, and TY530 only

Item	Model	Specification		
DMM communication package	92015	USB communication cable (adaptor included), application software		
Printer communication set	97016	Printer adapter, printer cable (D-sub 9-pin)		
Printer	97010	Thermal printer		
AC adapter printer	94005	100 V AC (in Japan)		
	94006	230 V AC ±10% (For Europe)		
	94007	120 V AC ±10% (For USA)		
Thermal printing paper	97080	10 rolls		

Low-cost Handheld DMM

Series BIGITAL SOKOGAWA ◆ Model *7*3201 73202 73203 73204 3.5 digits 4300 (LA-MA-H) (COM) count rranty

General Specifications 73201 / 02 / 03 / 04

Auto hold, overvoltage and current warning Digital display: 4300-count digital reading Digital display: Approx. 2 times/sec 0 to 50°C; 80% RH or less at 0°C to 40°C, or 70% RH or less at Display Measuring Rate 40°C to 50°C (no condensation)

Operating Temp.and Humidity

Storage Temp.and Humidity Temperature Coefficient -20°C to 60°C, 70 RH or less (no condensation) Add accuracy x 0.1/ °C to the basic accuracy at a temperature

Withstanding Voltage

within 0°C to 18°C and 28°C to 50°C 3.7 kV AC for 1 minute

(between input terminals and casing, for 73201,73202, 73203)

5.55 kV AC for 1 minute

(between input terminals and casing, for 73204) Two AAA (LR03 or R03) dry cells

Power Supply Battery Life Approx. 600 hours

(for continuous DC voltage measurement with alkaline cells) Auto Power Off The power is automatically turned off when no operation is made

for approx. 20 minutes (can be disabled). N/A for 73204

Dimensions Weight

74 (W) x 155 (H) x 31 (D) mm Approx. 240 g (including batteries) Safety EN61010-1; EN61010-2-031

(600 V, CAT II; 300 V, CAT III; contamination level 2,

indoor use: 73201,73202, 73203) (600 V, CAT III; contamination level 2, indoor use: 73204)

EMC EMI: EN55011 (Class B, Group 1)

EMS: EN50082-1

Standard Accessories

Compliance with Standards

User's manual: 1 Test lead set (RD031): 1

AAA (LR03/R03) dry cells (built in): 2 Spare fuse F05 (500 mA/250 V, not included for 73204): 1 Spare fuse F02 (15 A/250 V, not included for 73204): 1

Name Specification Fuse F05 500 mA/600 V F02 15 A/600 V Test leads RD031 Red / black (1 set) B9646GB Carrying case (hard) Houses the DMM and test leads Rubber case 93007 For DMM

Compact size, ideal for carrying

- Large display for easy viewing
- Safe design allows measurement in excess of 20 A (excluding 73204)
- Special model for voltage measurement (73204)
- Simple auto hold function
- Capacitors can be checked (73202/73203)

conditions: Temperature and humidity = 23° C \pm 5° C, 80% RH or less; Accuracy = \pm (% of reading + digits) Note: Response time is the time required for achieving accuracy specified for the corresponding range

DC Voltage Measurement (...V)

Demon	Accuracy			least Bardeters	Maximum Input
Range	73201	73202/04 73203		Input Resistance	Voltage
400.0 mV	0.5% + 1	0.5% + 1	0.3% + 1	>100 MΩ	
4.000 V				11 MΩ	
40.00 V				10 ΜΩ	600 V
400.0 V	0.75% + 1				
600 V					

Response time: 1.5 seconds or less for 400 mV range, 1 seconds or less for all other ranges

AC Voltage Measurement (~V)

710 1011ug	moderation ()			do dotoolion dina i iii	10 value ealibration
Donne	Accuracy			Innui Decisione	Maximum Input
Range	73201	73202	73203/04	Input Resistance	Voltage
4.000 V				>11 MΩ, <50 pF	
40.00 V	1%	1% + 5		>10 MΩ, <50 pF	600 Vrms
400.0 V		0.75% + 5			
600 V	1				

Response time: 2 seconds or less

• DC Current Measurement (... A)

Not available with 73204						
D	Accuracy			Valla D	M	
Range	73201	73201 73202 73203 Voltage Drop		Maximum Input Current		
400.0 μA *1				<0.17 mV/μA		
4000 μΑ	1% + 2		<0.17 ΠΙν/μΑ	400 mA (500 mA/600 V		
40.00 mA *1		176 + 2		<3 mV/mA	fuse-protected)	
400.0 mA	400.0 mA			<3 IIIV/IIIA		
4.000 A	2% + 2		<0.04 V/A	10 A (15 A/600 V fuse-protected)		
10.00 A *2						

*1: Drift in the least significant digit may occur.
*2: Measurement of 11 to 20 A can be performed within 30 seconds. A warning buzzer sounds when 30

AC Current Measurement (~A)

Not available with 73204 Me				ean-value detection and hivis-value calibration		
	Accuracy (40 - 500 Hz)				M	
Range	73201	73202	73203	Voltage Drop	Maximum Input Current	
400.0 μΑ*1		2% + 20		<0.17 mV/uA		
4000 μΑ	2% + 5			<0.17 ΠΙν/μΑ	400 mA (500 mA/600 V fuse-protected)	
40.00 mA*1	2% + 20		<3 mV/mA			
400.0 mA	2% + 5			10		
4.000 A	2.5% + 20			0.041//4	10 A	
10.00 A*2			<0.04 V/A	(15 A/600 V fuse-protected)		

*1: Drift in the least significant digit may occur.
*2: Measurement of 11 to 20 A can be performed within 30 seconds. A warning buzzer sounds when 30

seconds have passed. Response time: 2 second or less

Resistance Measurement (Ω)

	Range	Accuracy 73201 to 73204	Maximum Testing Current	Open-circuit Voltage	Input Protection Voltage
ŀ					
ı	400.0 Ω	0.75% + 2	<1 mA	<3.4 V	
I	4.000 kΩ		<0.5 mA	<1.0 V	
ĺ	40.00 kΩ	0.75% + 1	<70 μΑ	<0.7 V	600 V
ĺ	400.0 kΩ		<7 μΑ		
ĺ	4.000 MΩ	2% + 1	<0.7 μΑ	<0.7 V	
ĺ	40.00 MΩ	5% + 2	<70 μΑ		

Response time: 1 second or less for 400 k Ω range or less, 5 seconds or less for 4 M Ω range, 15 seconds or less for 40 M Ω range

• Continuity Check (a))

Range		Continuity Beeper 73201 to 73204	Open-circuit Voltage	Input Protection Voltage
400.0 Ω		Buzzer sounds at 50 \pm 20 Ω or less	<3.4 V	600 V

Response time: 0.2 second or less (buzzer response)

Diode Test (-k-)

Range	Accuracy 73201 to 73204		Input Protection Voltage
2.00 V 1% + 1 (testing current 1 mA or less)		<3.4 V	600 V

Response time: 1 second or less

Capacitor Check (⊣⊢)

_		Inner & Decide at lane		
Range	73201/04	73202	73203	Input Protection
20.00 nF				
200.0 nF				
2.000 μF	Not available	2% + 5 (20 nF range: Accurac	i, typical y after zero calibration)	500 mA/250 V fuse-protected
20.00 μF		(20 m range. / toodraby and/ 2010 balls/allon)		laco protoctoa
200.0 μF				

Response time: 1 second or less

Performance

Test conditions: Temperature and humidity = 23° C \pm 5° C, 80% RH or less; Accuracy = \pm (% of reading + digits).

• DC Voltage Measurement (... V)

Range	Accuracy	Input Resistance	Maximum Input Voltage
400.0 mV	1.2 + 2	>100 MΩ	
4.000 V 0.7 + 1		11 MΩ	
40.00 V			600 V DC
400.0 V	1.2 + 1	10 MΩ	
600 V			

• AC Voltage Measurement (~V) Mean-value detection and RMS-value calibration

Range	Accuracy	Input Resistance	Maximum Input Voltage
4.000 V		>11 MΩ, <50 pF	
40.00 V	2.0 + 5		600 Vrms
400.0 V		>10 MΩ, <50 pF	
600 V			

Resistance Measurement (Ω)

Range	Accuracy	Maximum Testing Current	Open-circuit Voltage	Input Protection Voltage
400.0 Ω		<1 mA	<3.4 V	
4.000 kΩ	1.2 + 2	<0.5 mA	<1.0 V	
40.00 kΩ	1.2 + 2	<70 μΑ		600 V
400.0 kΩ		<7 μΑ	<0.7 V	
4.000 MΩ	2.0 + 3	<0.7 μΑ	<0.7 V	
40.00 MΩ	5.0 + 3	<70 nA		

• Continuity Check (→))

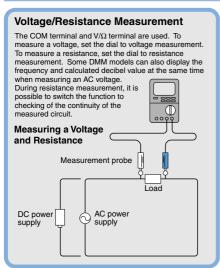
Range	Continuity Beeper	Open-circuit Voltage	Input Protection Voltage
400.0 Ω	$50\pm20~\Omega$	<3.4 V	600 V

• Diode Test (-K-)

Range	Accuracy	Testing Current	Open-circuit Voltage	Input Protection Voltage	
2.00 V	1.5 + 1	<1.0 mA	<3.4 V	600 V	

Optional Accessories and Spare Parts

Name	Model	Specification	Applicable DMM Models	Appearance			
DMM communication package	92015	USB communication adapter + USB communication cable + Application software	TY700 series TY530	Managara Cara Cara Cara Cara Cara Cara Cara			
Communication package for printer	97016	Printer adapter + Printer cable	TY700 series TY530				
Printer	97010	Thermal printer (paper width 112mm)					
	94005	AC 100V ±10%					
AC adapter for printer	94006	(For Europe) 230V AC ±10% TY700 series TY530					
	94007	(For USA) 120V AC ±10%	11000				
Thermal printing paper	97080	10 rolls (1set)		7			
Test leads	98015	1000V CAT.III 600V CAT.IV Red/black (1set)	All models				
restreads	RD031	L-plug, Red/black (1set)	732 series	<			
Test leads with Alligator Clip	99014	1000V CAT.III 600V CAT.IV Red/black (1set)	All models				
Alligator clips	B9646HF	Red/black(1set) All models		98015 99014			
	F02	15A/250V (3pcs/1set)	73201/73202/73203				
Fuse	F05	500mA/250V(3pcs/1set)	73201/73202/73203				
i use	99015	440mA/1000V(1pc/1set)	TY700/TY500 series				
	99016	10A/1000V(1pc/1set)	11700/11300 Selles				
Rubber case	93007		732 series				
	B9646GB	Hard case	732 Series				
Carrying case	93029	Hard case (Houses the DMM, the test leads and communication cable)	TY700/TY500 series				
	90050	-50°C to 600°C(for liquid)					
Temperature (thermocouple	90051	-50°C to 600°C(for liquid)	T)/700/T)/500				
type K) probe	90055	-20°C to 250°C(for surface)	surface) TY700/TY500 series				
	90056	-20°C to 500°C(for surface)					
Current clamp probe	96001	For 400A AC; 10mV/A AC output	All models except 73101 (with TY500 series upto 60A	€ 17			
Surron Glamp probe	96095	For 130A AC/180A DC; 10mV/A AC/DC output	can be read directly)				


Current Clamp Probe: TY700/TY500 series (Direct reading is possible for TY500 series)

Name	96036	96033	96030	96031	96032	96034	96035
Current Clamp Probe		CE	€ CE	€ CE	B	A ce	*9V battery-operated. Can be AC adaptor-operated (optional)
Measurable Conductor Diameter	dia. 40mm	dia. 18mm	dia. 30mm	dia. 30mm	dia. 65mm	dia. 65 x 100mm	dia. 170mm
Measurement Range	2A,AC	50A,AC	200A,AC	500A,AC	700A,AC (1000A for 5 minutes)	1000A, 2000A, 3000A, AC	300 - 3000A,AC
Output Voltage	50mV,AC	500mV,AC	500mV,AC	500mV,AC	250mV,AC	500mV,AC	500mV,AC
Accuracy *varies according to input/Amplitude	±0.5% of rdg	±0.5% of rdg	±0.5% of rdg	±0.5% of rdg	±1.0% of rdg	±1.0% of rdg	±1.0% of rdg
Frequency Range	20Hz - 5kHz	20Hz - 20kHz	20Hz - 20kHz	20Hz - 5kHz	45Hz - 66Hz	30Hz - 1.5kHz	10Hz - 20kHz
Maximum Circuit Voltage	50V,AC	300V,AC	600V,AC	600V,AC	600V,AC	600V,AC	1000V,AC (pri)

Note:Use AC voltage range of the DMM.

Note:Need to covert the meter reading except TY500series.

Basic Usage Digital Multimeters

Current Measurement

The COM terminal, and A, μA or mA terminal are used. Some models have shutters for preventing erroneous insertion into the current terminals and allow a contact of a lead to a current terminal only when the dial is set to current measurement. For these models, you cannot set the dial to voltage measurement while a lead is left inserted into a current terminal. This feature provides greater safety. Measuring a Current Current AC power supply DC power supply

A current flows through a diode when the power supply is connected as (1) below, while, almost no current flows when the power supply is connected as (2). The diode test function applies an adequate forward voltage across a diode to make a constant current flow and measures the voltage drop in the forward direction to determine the forward and reverse **Checking the Polarity** of a Diode A K — Anode Cathode Current DC power (1)

The circuit needs to be open for connection

World Wide Web site at http://www.yokogawa.com/MCC

[Ed: 09/b]

MOTICE

• Before using the product, read the instruction manual carefully to ensure proper and safe operation

YOKOGAWA METERS & INSTRUMENTS CORPORATION Tachihi Bld. No.2, 6-1-3 Sakaecho, Tachikawa-shi, Tokyo, 190-8586 Japan International Sales Dept. Tachihi Bld. No.2, 6-1-3 Sakaecho, Tachikawa-shi, Tokyo, 190-8586 Japan Phone: +81-42-534-1413 Facsimile: +81-42-534-1426

YOKOGAWA CORPORATION OF AMERICA 2 Dart Road, Newnan, GA. 30265-1094 U.S.A. Phone: +1-770-253-7000 Facsimile: +1-770-254-0928

YOKOGAWA EUROPE B. V. Euroweg 2 3825 HD Amersfoort, THE NETHERLANDS Phone: +31-88-4641000 Facsimile: +31-88-4641111

YOKOGAWA ENGINEERING ASIA PTE. LTD.
5 Bedok South Road, Singapore 469270 SINGAPORE
Phone: +65-6241-9933 Facsimile: +65-6241-2606

YOKOGAWA AMERICA DO SUL LTDA. Praca Acapulco, 31-Santo Amaro, Sao Paulo/SP, BRAZIL CEP-04675-190 Phone: +55-11-5681-2400 Facsimile: +55-11-5681-4434

YOKOGAWA MEASURING INSTRUMENTS KOREA CORPORATION City Air Terminal Bidg., 405-9, #159-6, Samsung-dong, Kangnam-ku, Seoul, 135-728 KOREA Phone: +82-2-551-0660 Facsimile: +82-2-551-0665

YOKOGAWA AUSTRALIA PTY. LTD.
Tower A/112-118 Talavera Road Macquarie Park, NSW 2113
Australia
Phone: +61-2-8870-1100 Facsimile: +61-2-8870-1111

YOKOGAWA INDIA LTD.
Plot No. 96. Electronic City Complex, Hosur Road, Bangalore 560100, INDIA
Phone: +91-80-4158-6000 Facsimile: +91-80-2852-1441

YOKOGAWA SHANGHAI TRADING CO., LTD. 4F Tower D, Cartelo Crocodile Building, No.568 West Tianshan Road, Shanghai, CHINA Phone: +86-21-6239-6363 Facsimile: +86-21-6880-4987

YOKOGAWA MIDDLE EAST B. S. C.(C) P.O. BOX 10070, Manama, Building 577, Road 2516, Busaiten 225, Muharraq, BAHRAIN Phone: +973-17-358100 Facsimile: +973-17-336100

YOKOGAWA ELECTRIC CIS LTD. Grokholskiy per. 13, Build. 2, 4th Floor, 129090, Moscow RUSSIAN FEDERATION Phone: +7-495-737-7868 Facsimile: +7-495-737-7869

Represented by:

MIK-EM16